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C.S.I.LR. RESEARCH UNIT

DEPARTMENT OF PHYSICAL AND THEORETICAL CHEMISTRY
UNIVERSITY OF PRETORIA

PRETORIA, REPUBLIC OF SOUTH AFRICA

Summary

The plate-height behavior of open tubular columns, for both gases and
liquids, has been studied fundamentally in the turbulent flow region. Ap-
priate analytical expressions have been established on the basis of a purely
phenomenological description of turbulent flow dynamics. It has been
shown that under these flow conditions, the plate height decreases with
increasing Reynolds number and that, most significantly, this decrease is
strongly dependent on the mass distribution coefficient.

INTRODUCTION

It has been suggested (1-3) that by inducing “turbulence” in the
mobile phase of chromatographic systems the efficiency may,
under suitable circumstances, be improved and the separation time
reduced. Pretorius and Smuts (I) have made a preliminary attempt
to evaluate the broad trends of chromatographic behavior in the
turbulent flow region on theoretical grounds using empirical data
on velocity profile and dispersion coeflicients. Giddings (4) has
discussed the characteristics of turbulent flow qualitatively and
subsequently (2) also presented some experimental data on the
performance of columns operating under turbulent flow conditions.
From none of these investigations, however, do the merits of
turbulent low chromatographing emerge unequivocably and there
is a need for a more exhaustive analysis of the technique. As a first
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step the present study has been undertaken to establish a plate-
height expression covering both the laminar and turbulent flow
regions in open tubular columns and also to discuss those aspects
of turbulent flow which have a bearing on chromatography.

It has been shown (1,5) that a general expression for the plate
height of open tubular columns as measured at the column outlet
is

2D, | 2L,dir?
e
= HM(x)fm + Csﬁoﬂ

_[n _adr _ r\*]?
L= ) 2 [ (r) 1+k<n)]
— (111 — I, + 113) + 2(111 — Ilz)k + Iuk2
= aT+5? @)

L) fot Caf, (1)

where

and ®{r) of the form
®(r) = f ————2"4’(::) dr (3)

¥(r) is a function which relates the radial dispersion coefficient
D(r) at radial position r to a reference value D; by the expression

D.(r) = Dpp(r) (4)
@(r) is a similar function defined by
u(r) = a¢(r) (5)

where the mean velocity # is chosen as reference. The term dis-
persion coefficient is used in a general sense. It includes, ad-
ditively, all the dispersion coefficients defined by phenomeno-
logical Fickian laws for the various mass-transport processes. In
the present context it is therefore the sum of the molecular and
eddy diffusion coefficients. D, is the longitudinal dispersion coeffi-
cient. A previous investigation of band dispersion in turbulent flow
by Taylor (6) shows, in a somewhat different context, that of the
two terms included in the parentheses in Eq. (1) the first is about
0.01 times as large as the second. This result has also been con-
firmed by de Clerk (7) and this term can be neglected in the ex-
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pression for H for the turbulent flow region. C; is the coefficient of
i(x) in the term representing the contribution of the plate height of
resistance to lateral mass transfer in the stationary phase. The
quantities f, and f; are familiar (8,9) functions that correct for the
compressibility of the mobile phase. These functions are identical
for both the laminar and turbulent flow regions, since the flow dy-
namics does not enter in their derivation (5). To make Eq. (1)
valid for incompressible fluids, it will be assumed that f, and f;
are equal to unity for such fluids. In general therefore

_ =)@ -1

Fm 8 —1)? (compressible ideal gases) {6)
=1 (incompressible fluids)
£ =g 8;; - B (compressible ideal gases) (7)

= 1 (incompressible fluids)

Equation (1) may now be regarded as a general form of the well-
known Golay expression in that it is valid for any type of flow that
can be characterized by suitable functions ¢(r) and (7). Thus for

laminar flow
so-1[1-()]

D(r) =D, 9)
Evaluation of I, via Egs. (2), (8), and (9) reduces Eq. (1) to the Golay

equation, viz.,

and

2D, 1+ 6k + 11k2] 2@, _
H= i, fm+[ 24(1 + k)2 ]Dmfm"'csuoﬁr (10)

To evaluate the plate height for the turbulent flow region from
Eq. (1), it is clearly necessary that the functions ¢(r) and ¢(r) must
be known for this flow region; the complexity of the turbulent
flow dynamics recessitates a phenomenological approach.

PHENOMENOLOGICAL DESCRIPTION OF TURBULENT FLOW

Turbulent flow in open tubes is characterized by violet random
movement (10-12) of macroscopic fluid elements. The magnitude
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of the distances over which these movements occur varies greatly
(10,11) but the upper limit is similar to the tube diameter (10,12).
Those random movements, often referred to as eddies (10,11,14),
are superimposed on axial flow in the conduit. The turbulence in
the fluid manifests itself in several ways. The fluid appears to be
more viscous in that a smaller increase in the average linear flow
velocity fora fixed increment in the pressure drop across the column
is observed in the turbulent than in the laminar flow region. Fur-
thermore, heat- and mass-transfer rates are much larger in the
turbulent than in the laminar flow region. All these properties of
turbulent flow can be satisfactorily predicted by a phenomeno-
logical description. This would merely correlate the observed ex-
perimental measurements, without necessarily further speculating
about the origin of the observed phenomenon in terms of more
fundamental concepts.

For the purpose of quantitatively describing ¢ and ¢ by means
of phenomenological variables, it is necessary to consider the flow
velocity at which turbulence sets in. This flow velocity cannot, in
principle, be predicted by a consideration of the normal hydro-
dynamic relations such as the Navier-Stokes equation (15). Al-
though solutions of those equations are valid at all flow velocities,
flows which are predicted are, however, not necessarily stable in
real situations. It is found that for real flows above a critical flow
velocity, small perturbations of the flow patterns are increased and
turbulence sets in. It is more general to refer to this flow region as
unstable since in the absence of perturbation the flow dynamics
will remain laminar (14). Similarly perturbations in the flow system
at flow velocities below the critical may cause deviations from
streamline flow (11), but there will be a tendency for these pertur-
bations to be damped out. The fundamental cause of the observed
instability has not been explained satisfactorily (11,15). It has,
however, been demonstrated that this critical flow velocity can be
correlated by the well-known dimensionless group, viz., the Rey-
nolds number, Re = 2ra/v (11,15,16). Experimental observation has
indicated that this critical value of the Reynolds number is about
2100 (11,15,16).

The random nature of turbulent flow necessitates statistical
methods for its description (17,18). Consider therefore a macro-
scopic fluid element, small enough to allow its constituent mole-
cules to move coherently together. This element moves about
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randomly and the following average quantities serve to describe
its movement at any point in real space:

u=a +u"
v'=0+0v"
w!= !_+_wll

where @' is the component of the average velocity in the axial
direction and u'’' the component of the turbulent fluctuation ve-
locity in the same direction. ¢', @', v'’, and w'’ are similar quan-
tities for the y and z axes in a rectangular cartesian representation.
For an open tube ' = ' = 0, but the associated turbulent velocity
fluctuations are, however, not zero. For the present study it is
sufficient to consider the behavior of the representative fluid ele-
ment only in the lateral direction.

Prandtl (19) and others (20,21) have suggested that the move-
ment of the macroscopic fluid elements can be considered to be
very similar to that of gas molecules. This analogy has led to the
introduction of a number of concepts for the description of tur-
bulence which are similar to those employed in the theory of gas
kinetics. A characteristic length, analogous to the mean free path
length concept of gas kinetics, is one of these. This quantity is
known as the mixing length and is defined as that distance which a
fluid element must move with its initial mean velocity in the trans-
verse direction until its flow velocity in the axial direction differs
from that of the surrounding fluid elements by an amount equal to
the mean transverse fluctuation in the turbulent velocity (13,
19), i.e.,

di(y)
dy

where [ is the mixing length. The present analogy can now be taken
to its logical conclusion by the introduction of momentum and
mass-transfer laws similar to those well known in gas kinetics.
Thus, following arguments analogous to the derivation of an ex-
pression for the shear stress present in gas flow, it is found that
(10,11,22)

8" =1

(11)

da(y)

da(y)|da_ , , da
dy |dy P€dy

In analogy to the phenomenological relation between 7', di/dy,

i =—p'(1)?

(12)
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and the kinematic viscosity coefficient (10,22), viz.,

' ! @
T pvdy (13)

€' can therefore be regarded as a virtual kinematic viscosity coeffi-
cient (10,11,13). By means of dimensional arguments, von Karman
(23) has shown that for eddies at a distance from the wall

dii/dy

d*a/dy*
where « is an empirical constant for all turbulent flows. From Eqs.
(12-14) it thus follows that

o Aduldy)®
(@uldy)?

In the region very close to the wall, Eq. (15) is not valid. A number
of expressions have been proposed (24-26) for €' in this region—
again from dimensional arguments. These expressions will not be
given here, but they are shown in Table 1.

In general the shear stress is comprised of both the molecular
and turbulent contributions, i.e., from Egs. (12) and (13)

=«

(14)

(15)

d_
T =—(n+p'e) d—'; (16)

The present simple model of the turbulent flow structure also
takes into account the observed increase in mass transfer. The ap-
propriate phenomenological equation for material flux is given by

d
j=—(Dn+e€") d—; a7

where €'’ is the turbulent diffusivity. The von Karman similarity
hypothesis postulates (27) that €'’ =¢€'. Although experimental
justification for this equivalence is not entirely conclusive, it
appears reasonable (24,26) to assume

€' =€ =€ (18)

for the present study.

Equations (12-17) and suitable expressions for € in the region
close to the wall serve now to relate the flow velocity and eddy
viscosity. If empirical data on the dependence of either the ve-
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locity or the eddy viscosity on the transverse coordinate are avail-
able, the others’ dependence on this coordinate can be obtained
via the above equations. Fortunately a wealth of experimental
data has been gathered on velocity and eddy viscosity distributions
(24-34) in the turbulent flow regions. It has become customary
(10,11,24-29) to correlate all this data by the introduction of the
dimensionless variables u, and y,, defined by

u

U, = Z (19)
g =22y (20)
where
u, = o (21)
1 pl
and
To =fT (22)

It has been argued (10,11,26) that u, is a single-valued function of
Y+ in the turbulent flow region and there is overwhelming experi-
mental support of this assumption for Re > 20,000 (10,11,26,34).

A number of studies (10,11,24-26,28) have established semi-
empirical correlations relating e/v and u, to the dimensionless
transverse coordinate y;. It has also been shown (10,11) that the
nature of these velocity profiles is determined mainly by the Rey-
nolds number 2ér/v and to a lesser extent by the Schmidt number,
i.e., ¥/Dm. For this reason most of the subsequent results will be
cast in a dimensionless form. The main results of some of these
studies are summarized in Table 1.

In the flow region 2000 < Re < 20,000 there appears to be some
disagreement on the accuracy of the above-mentioned approach.
Thus Sage et al. (24,30) have reported experimental evidence that
u,; and y, do not correlate the observed velocity distributions ac-
curately enough in this region. Their observed velocity profiles
are shown in Fig. 1. No attempt has been made to correlate this
reported (24,30) deviation of u,(y,) from a single-valued function
in the flow region 3000 < Re < 20,000. To take this into account
in the expressions for u.(y.), an analytical expression was fitted
very roughly to the few experimental results reported by Sage et
al. For the region 0 < y, < 5 it has been assumed that Eq. 23a
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(see Table 1) still holds. In the region from y, =5 to roughly
y+ = 20, the following expression was found to fit the experimental
data suitably:

4, =4.9— [3.79 + 5.5z ] In 5+ [3.79 + 5.5z

In (6.6) In (6.6) ]1“?” (25)

2z’ is now a function of the Reynolds number and of the form

z' =1+ 86700/Re' 4 (26)
For the central core Eq. 24b (see Table 1) was modified to

u, =3.8z'+281ny, (27)
In any subsequent calculations with Eqgs. (25) and (27), the value of

30 —-‘
— — — = EXPERIMENTAL DATA
HYPOTHETICAL VELOCITY PROFILES

25—

Re=2000

Re = 20000
4000 800C

l I 1
100 o' 102 103
Ye
FIG. 1. Experimental evidence of the deviation of u, from a single-valued
function of y, in the intermediate Reynolds number flow region.
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y+ at which both the equations yielded the same value of u; was
determined from

uy [Eq. (25)] = us [Eq. 27)]

This value depended only slightly on the Reynolds number and
was +21.

The profiles calculated with the aid of Egs. (25-27) are compared
in Fig. 1 with the experimental data found by Sage et al. From this
figure it is clear that the agreement between the experimental and
the fitted curves is reasonable, and it would appear that the analyt-
ical expressions account satisfactorily for the relevant physical
phenomena.

Finally ¢ and ¢ can now be obtained directly from the semi-
empirical functions u,(y.) and e(y,) as follows. First, it follows from
Eq. (17) that

D,(r) =D, +e=D, (1 +Di) (28)
Clearly, from Eq. (4), if
D.=D,
then
bys) =1+ S8 (29)

Second, taking Eq. (19) into consideré.tion,
u(y+) = uyu, (30)

After substitution of the empirical relation (11)
o = 0.03325p’ () 4ptiar 1 (31)

into Eq. (21), it follows, upon rearrangement, that

u

U, =0.2 Re'®

(32)

Thus from Egs. (5), (30), and (32)

(y+) =%u+ (33)
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EVALUATION OF THE PLATE HEIGHT FOR THE
TURBULENT FLOW REGION

¢ and ¢ for the turbulent flow region are given by Eqs. (29) and
(33) along with appropriate expressions for €*; and u.,. Before under-
taking the actual evaluation of the plate, it is instructive to consider
the variation of these quantities with the actual radial coordinate.
In Fig. 2 the function ¢(rp) is shown. From this representation it is
evident that the velocity profile becomes flatter and the laminar
buffer layer narrower with increasing Reynolds number. Figure 3
depicts the dependence of  on 1 — 7/r.. Itis clear from this informa-
tion that convective mechanisms contribute overwhelmingly to
the dispersion coeflicient near the center of the conduit and that
this effect is more pronounced for liquids than for gases. The magni-
tude of this convective mechanism declines as the column wall is

Re = 10,000 BUFFER LAYER

Re = 80,000

0.8—

¢(r°) 0.5—

04—

I | | I

0 0.2 0.4 .6 0.8 1.0
o
FIG. 2. Velocity profiles in the turbulent flow region.
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FIG. 3. Radial dependence of dispersion characteristics.

approached. Furthermore, convective mass-transport mechanisms
are more significant closer to the wall for liquids than for gases.
The experimental results (29) compare reasonably with the theo-
retical curves.

The integrals I,,, I;5, and I;3 can now be rewritten in terms of
the dimensionless quantities introduced above by employing the
transformation

v =g (1—;’) (34)
t
where
g=0.1Re"® (35)

It is thus found that
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_[° dy, ¢ 21— (y+/8)1¢(y+) dy. |
w=[ = L, g | o

I,= 7 [1~ (y+/8)] dy+f 2[1 — (y+/g) ¢ (ys) dy. (37)

0 2gd(y+) g
_ (P11~ (y+/8)]® dy~
la = 0 2g¥(y+) (38)

The complexity of the expressions for these integrals frustrates any
attempt to evaluate them analytically. Recourse has therefore had
to be made to numerical integration by Newton-Cotes methods
(35), and a Fortran IV program was written for an IBM 1130 digital
computer to facilitate all the calculations.

Equations (36-38) were evaluated for the various proposed sets
of phenomenological expressions summarized in Table 1. The
agreement between the values of the integrals calculated for
the various sets of expressions is reasonable. These values exhibit,
furthermore, the same behavior in the range of Reynolds and
Schmidt numbers considered. Only the integrals evaluated via the
corrected velocity profiles, i.e., Eqgs. (25-27) and Eqs. (23) and (24),
are listed, together with hy(x) for k = 0, in Table 2 for various values
of the Schmidtand Reynolds numbers. hy{x) = Hy(x)/r, the reduced
local plate height, is considered here and below to cover a wider
range of parametric values.

It is interesting to note in Table 2 that the numerical values of
the integrals I 4, I;5, and I,3 are very nearly the same. Furthermore,
for k= 0 the evaluation of the plate height with the aid of Eq. (1)
and the data in Table 2 involves the difference of two very large
quantities. This can best be illustrated by considering the case Sc =
1000 and Re=10,000, where (I,;, —2L,+ I,;) ScRe= 22459
— 22452 = 7. Although reasonable care has been taken to obtain
sufficient accuracy, discrepancies in these calculations can be
expected and will have to be accepted as an inevitable conse-
quence of plate-height expressions of this type. This numerical
inaccuracy does not limit the present study seriously, since for
values of k only slightly larger than zero (k = 1072), I,,k* becomes
the dominant term in the plate-height expression. In this region the
value of the plate height obtained from Eq. (1) and Table 2 depends
almost solely on the value of I;; which is reliably known. This point
is well demonstrated by considering Eq. (1) and Fig. 4.
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FIG. 4. Relative contributions of the respective terms to the value of (I, —
21, + 13) + 2(1, — L)k + I, k2

This numerical form of the plate-height expression is inconve-
nient for subsequent use in calculations. The integrals in Table 2
were therefore used to obtain an analytical expression for hy(x) by
numerically fitting them to suitable functions. These equations
have been fitted to the data in the region 2300 < Re < 100,000.
Thus for Sc=1

hM(x)—[37810 +1.4x10- 5+(218 + 2.5910 )k

Re2! Rel1?
6.01 ScR
(1‘; 081+67X10_)k2](—1% (39)

and for Sc = 1000
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hy(x) =[

3210+ (lfé—?,?s— 1.6 % 10_6) k
27.55 -4} 2| _ScRe_
(R )]st

57

(40)

Equations (39) and (40) hold only for discrete Schmidt numbers.
Although it should be possible to fit hy(x) numerically to two
simultaneous variables, the resulting expressions are unwieldy. A
simple expression that incorporates all the essential features of the

TABLE 2

Integrals I,,, I,», and I,; Calculated with
Modified Velocity Profiles [Eq. (25)]¢

Re Iy I, Iy, hy(x)
Sc=1
4,000 5.7643 X 102 4.9839 X 102 4.3210 x 1072 4.70
8,000 3.1759 x 102 2.9438 x 1072 2.7331 x 102 1.72
10,000 2.6680 x 102 2.4978 x 102 2.3420 x 102 1.43
20,000 1.5796 x 102 1.5013 x 102 1.4285 x 1072 1.10
40,000 9.3527 x 103 8.9529 x 10-3 8.5779 X 1073 1.00
80,000 5.4674 x 103 5.2772 X 107* 5.0973 x 102 0.83
Se=10
4,000 2.3874 X 102 2.1347 x 1072 1.9120 x 102 12.04
8,000 1.2295 x 102 1.1683 x 102 1.1112 X 102 3.21
10,000 1.0118 X 102 9.6925 X 10—2 9.2914 x 10°® 2.48
20,000 5.6374 X 1073 5.4566 x 102 5.2842 X 103 1.68
40,000 3.1557 x 103 3.0662 x 103 2.9804 x 1078 1.46
80,000 1.7512 X 102 1.7115 x 102 1.6733 x 103 1.12
Sc¢=100
4,000 8.4755 x 103 8.4755 x 1072 7.1350 x 10~ 26.00
8,000 4.2865 x 1073 4.2865 x 103 3.9986 x 103 5.37
10,000 3.5079 X 102 3.5079 x 103 3.3115 x 107® 3.96
20,000 1.9215 x 103 1.8779 x 10-3 1.8355 x 1073 2.70
40,000 1.0581 x 102 1.0353 x 102 1.0131 x 103 2.51
80,000 5.775 x 10~ 5.6771 x 10—4 5.5791 x 10 1.87
Se=1000
4,000 2.7859 x 10-3 2.5940 x 102 2.4163 X 102 56.91
8,000 1.4032 x 103 1.3672 x 102 1.3224 x 102 9.19
10,000 1.1468 x 10-® 1.1226 x 10— 1.0991 x 1073 6.56
20,000 6.2544 X 10 6.1418 x 10— 6.0316 x 10— 4.93
40,000 3.4281 x 10— 3.3650 x 10—+ 3.3032 X 10— 5.27
80,000 1.8625 x 104 1.8342 x 10— 1.8065 x 10—* 3.94

2 hy(x) for the case k= 0.
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FIG. 5. Typical trends with k for both the laminar and turbulent flow regions.

more exact equation to a logarithmic degree of accuracy is

_ 36X 10°  100kSc2”
) =TT hRe T T+ B

Equations (10) and (39-41) have been used to calculate the
curves shown in Figs. 5 and 6. In the case of Eq. (10), hy(x) was
obtained for the laminar flow region after rearrangement and by
taking C, = 0 and p=1. The broken lines represent the approxi-
mate expression, Eq. (41).

(41)

DISCUSSION OF THE LOCAL PLATE HEIGHT FOR
OPEN TUBULAR COLUMNS FOR C.=0

The well-known (36—41) behavior of hy(x) in the vicinity of its
minimum (ReSc = 2/VT,) in the laminar flow region is not shown
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in Fig. 6 since the characteristics of the local plate height in the
laminar region have been studied in great detail both experi-
mentally and theoretically (37-46). The minimum of the plate
height results from the competition between two band-broadening
effects. On the one hand, at flow velocities that are too low, the
solute band moves slowly enough for molecular diffusion to broaden
the band significantly per unit distance traveled along the column.
On the other hand, with increasing flow velocity, resistance to
lateral mass transfer in the mobile phase contributes increasingly
to the local plate height. The resulting minimum of hy(x) [hy(x) =
4V1,] depends on the mass distribution coefficient k. For k=0,
[Pp(%) I min = 1/ V3. This value increases with k Thus when k — o,
[hu(x)Imin = V11/3. This represents an increase of about a factor of
3. In the higher Reynolds number region, shown in Fig. 6, hy(x)
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FIG. 6. Various significant trends in the reduced plate height in both the

laminar and turbulent flow regions.
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increases linearly with Re. In this region hy(x) changes by about a
factor of 11 for a variation of k from 0 to large values (=10). The
variation of hy(x) with k is shown in Fig. 5. The linear increase can
be expected to persist with increasing Reynolds number as long as
the flow dynamics remain laminar. This Reynolds number range
extends up to Re ~ 2000.

As soon as turbulence sets in, the behavior of the local plate
height with respect to changes in both Re and k becomes quite
different from that in the laminar flow region. First, a pronounced
decrease in hy(x) is observed as soon as the flow becomes turbulent.
This decrease in hy(x) is much larger in the case of liquids (Sc =
1000) than in the case of gases (Sc = 1). Thus for liquids the pre-
dicted decrease in hy for k=0, when going from Re = 10° to
Re = 10%, is approximately five orders of magnitude. Furthermore,
hy(x) in the turbulent flow region for k = 0 is of the same order of
magnitude as its value at the optimum Reynolds number in the
laminar flow region. Second, the increase of hy(x) with a large in-
crement of k from k= 0 is much greater than in the laminar flow
region. Here again, this effect is more pronounced for liquids than
for gases, as is clearly demonstrated in Fig. 5 by the curves for
Re = 10,000. In advance it may be expected that this trend of Ay(x)
may seriously limit the application of turbulent flow chromatog-
raphy. Although there is a significant decrease in the plate height
when turbulent rather than laminar flow is employed, the resultant
value of hy(x) is still very large. From the point of view of separation
time, however, the gain may still be worth further consideration.

The interpretation of the decrease of the local plate height in the
turbulent flow region is, at this stage, obviously related to the en-
hanced lateral mass-transfer rates and flatter velocity profiles typical
of turbulent flow dynamics. The unexpected k dependence of A{x)
in the turbulent flow region necessitates, however, more careful
consideration. In this regard it should be pointed out that even for a
flat velocity profile hy(x) > 0 when &k > 0, as can easily be verified
from Egs. (2-5). Thus for a hypothetical flat profile and D,(r) = Dy,
it follows for k > 0 that

=1_K
BECE3E

This band broadening results because solute molecules near the
column wall have a greater chance of entering the stationary phase

hy ReSc (42)
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than those further away and are thus transported at a rate slower
than the average flow velocity (22). It has also been shown by de
Clerk (7) that this mechanism is formally equivalent to a “virtual”
velocity profile. Although it is not possible to distinguish quanti-
tatively in the expressions for the plate height between contribu-
tions associated with “real” and those associated with “virtual”
velocity profiles, consideration of Eq. (42) indicates that the effect
of the virtual velocity profile manifests itself mainly in the coeffi-
cient of k? in the expression for h, i.e., with I,;, Furthermore, it is
clear from Fig. 4 that it is mainly the I,;k? term that dominates the
value of I,, hence hy(x), at relatively large values of k It is thus not
unreasonable to conclude that it is mainly the effect of the virtual
velocity profile that causes the undue band spreading at large k
values. The absence of eddies in the laminar layer adjacent to the
column wall and the high linear velocity of the turbulent core are
physically responsible for the magnitude of this effect. The impor-
tance of the boundary layer properties is also accentuated by the
difference in the values of hy(x) for gases and liquids when k > 1,
as is evident from Fig. 5, if it is borne in mind that apart from the
boundary layer these fluids exhibit largely the same properties in
the turbulent flow region.

List of Symbols®

C, convenient parameter, related to the band-
broadening mechanism residing in the stationary
phase, defined by Eq. (1) (T)
c concentration of solute in the mobile phase
(ML~3)
D  dispersion coefficient (L*T!)
D, molecular diffusion coefficient in the mobile
phase (L*T1)
Do value of D,, measured at the column outlet (L2T-!)
D, longitudinal dispersion coefficient (L*T™Y)
D,  radial dispersion coefficient (L2T)
D. reference value of D,, defined by Eq. (4) (L*T)
D;, value of D; measured at the column outlet (L2T1)
f  Fanning friction factor

* Dimensions are given where applicable in terms of mass (M), length (L), and
time (7).
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fm

fs

g

H

Hy
h=H/Tt
hM = HM/rt
I

Ly, Ly, Iis
J

uy = ulu,

u = (rifp')"
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correction for compressibility of the mobile
phase, given by Eq. (6)

correction for compressibility of the mobile
phase, given by Eq. (7)

convenient parameter, defined by Eq. (35)

plate height measured at the column outlet (L)
contribution to H of the band-broadening mech-
anisms residing in the mobile phase (L)
reduced plate height

H,, measured in units of 7

integral, defined by Eq. (2)

integrals, defined by Eq. (2)

material flux in the x direction, defined by Eq.
(17) (ML*TY)

mass distribution coefficient; ratio of the solute
mass in the stationary phase to the solute mass
in the mobile phase at equilibrium

mixing length, defined by Eq. (14) (L)

pressure (ML™'T%)

ratio of the inlet to the outlet pressure

Reynolds number; Re = 2#4i(x)/v(x)

radial coordinate (L)

dimensionless radial coordinate

radius of open tubular column (L)

Schmidt number

linear flow velocity of the mobile phase in the
axial direction (LT-!)

radial average of u (LT™")

value of # measured at the column outlet (LT)
velocity component of a macroscopic fluid ele-
ment in the x direction (LT!)

component of turbulent fluctuation velocity of a
macroscopic fluid element in the axial direction
(LT

temporal average of linear velocity of a macro-
scopic fluid element in the x direction (LT"?)
dimensionless variable employed to correlate the
velocity distribution u(y) as a single-valued func-
tion in the turbulent flow region; see Egs. (19~
22)

variable, defined by Eq. (21) (LT™)
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velocity component of a macroscopic fluid ele-
ment in the y direction (LT!)

temporal average of the linear velocity of a mac-
roscopic fluid element in the y direction (LT™?)
component of turbulent fluctuation velocity of a
macroscopic fluid element in the y direction
(LT

velocity component of a macroscopic fluid ele-
ment in the 2z direction (LT!)

temporal average of linear velocity of a macro-
scopic fluid element in the z direction (LT)
component of turbulent fluctuation velocity of a
macroscopic fluid element in the z direction
(LT™)

lateral y coordinate (L)

dimensionless variable employed to correlate
the velocity distribution u(y) as a single-valued
function in the turbulent flow region; see Eq.
(19-22)

lateral z coordinate (L)

correction to velocity distribution u,(y.), defined
by Eq. (26)

symbol for turbulent viscosity as well as for
turbulent diffusivity when these quantities are
numerically equal (L*T™")

virtual kinematic viscosity for turbulent flow,
defined by Eq. (12) (L*T™")

virtual turbulent diffusivity, defined by Eq. (17)
(L*T)

viscosity in the mobile phase (ML™'T™")
empirical constant, defined by Eq. (14)
kinematic viscosity coeflicient of the mobile
phase

density of the mobile phase (ML?)

shear stress in the turbulent flow region, defined
by Eq. (12) (ML'T~?)

shear stress in the absence of turbulence, de-
fined by Eq. (13) (ML™'T"?)

shear stress at the tube wall, given by Eq. (22)
(MLT-?)

integral, defined by Eq. (3)
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b function, indicative of the lateral variation in the
linear velocity u, defined by Eq. (5)

Vi function, indicative of the lateral variation in the
radial dispersion coeflicient, defined by Eq. (4)
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