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A General 
Plate-Height Expression for 
Open Tubular Column Chromatography 

T. W. SMUTS, K. DE CLERK, and VICTOR PRETORIUS 
C.S.I.R. RESEARCH UNIT 
DEPARTMENT OF PHYSICAL AND THEORETICAL CHEMISTRY 
UNIVERSITY OF PRETORIA 
PRETORIA, REPUBLIC OF SOUTH AFRICA 

Summary 

The plate-height behavior of open tubular columns, for both gases and 
liquids, has been studied fundamentally in the turbulent flow region. Ap- 
priate analytical expressions have been established on the basis of a purely 
phenomenological description of turbulent flow dynamics. It has been 
shown that under these flow conditions, the plate height decreases with 
increasing Reynolds number and that, most significantly, this decrease is 
strongly dependent on the mass distribution coefficient. 

INTRODUCTION 

It has been suggested (1-3) that by inducing “turbulence” in the 
mobile phase of chromatographic systems the efficiency may, 
under suitable circumstances, be improved and the separation time 
reduced. Pretorius and Smuts ( 1 )  have made a preliminary attempt 
to evaluate the broad trends of chromatographic behavior in the 
turbulent flow region on theoretical grounds using empirical data 
on velocity profile and dispersion coefficients. Giddings (4)  has 
discussed the characteristics of turbulent flow qualitatively and 
subsequently (2 )  also presented some experimental data on the 
performance of columns operating under turbulent flow conditions. 
From none of these investigations, however, do the merits of 
turbulent flow chromatographing emerge unequivocably and there 
is a need for a more exhaustive analysis of the technique. As a first 
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44 T. W. SMUTS, K. OE CLERK, AND V. PRETORIUS 

step the present study has been undertaken to establish a plate- 
height expression covering both the laminar and turbulent flow 
regions in open tubular columns and also to discuss those aspects 
of turbulent flow which have a bearing on chromatography. 

It has been shown (1,5) that a general expression for the plate 
height of open tubular columns as measured at the column outlet 
is 

where 

and @(r) of the form 

+(T)  is a function which relates the radial dispersion coefficient 
D( r )  at radial position r to a reference value 0: by the expression 

D,(T) = DC+(r) (4 ) 

u(r)  = t@(r) ( 5 )  

+(r) is a similar function defined by 

where the mean velocity ii is chosen as reference. The term dis- 
persion coefficient is used in a general sense. It includes, ad- 
ditively, all the dispersion coefficients defined by phenomeno- 
logical Fickian laws for the various mass-transport processes. In 
the present context it is therefore the sum of the molecular and 
eddy diffusion coefficients. D, is the longitudinal dispersion coeffi- 
cient. A previous investigation of band dispersion in turbulent flow 
by Taylor (6) shows, in a somewhat different context, that of the 
two terms included in the parentheses in Eq. (1) the first is about 
0.01 times as large as the second. This result has also been con- 
firmed by de Clerk (7)  and this term can be neglected in the ex- 
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PLATE HEIGHT IN OPEN TUBULAR COLUMNS 45 

pression for H for the turbulent flow region. C, is the coefficient of 
~ ( x )  in the term representing the contribution of the plate height of 
resistance to lateral mass transfer in the stationary phase. The 
quantities fm and f, are familiar (8,9) functions that correct for the 
compressibility of the mobile phase. These functions are identical 
for both the laminar and turbulent flow regions, since the flow dy- 
namics does not enter in their derivation (5). To make Eq. (1) 
valid for incompressible fluids, it will be assumed that fm and f8 
are equal to unity for such fluids. In general therefore 

= 1 (incompressible fluids) 

f =- (” - ’) (compressible idea1 gases) 
5 2 (p3-1) ( 7 )  

= 1 (incompressible fluids) 

Equation (1) may now be regarded as a general form of the well- 
known Golay expression in that it is valid for any type of flow that 
can be characterized by suitable functions 4 ( r )  and JI(r). Thus for 
laminar flow 

and 
D(r) = D, 

Evaluation of I ,  via Eqs. (2), (8), and (9) reduces Eq. (1) to the Golay 
equation, viz., 

To evaluate the plate height for the turbulent flow region from 
Eq. (l), it is clearly necessary that the functions $(r) and 4(r)  must 
be known for this flow region; the complexity of the turbulent 
flow dynamics recessitates a phenomenological approach. 

PHENOMENOLOGICAL DESCRIPTION OF TURBULENT FLOW 

Turbulent flow in open tubes is characterized by violet random 
movement (10-12) of macroscopic fluid elements. The magnitude 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



46 T. W. SMUTS, K. DE CLERK, AND V. PRETORIUS 

of the distances over which these movements occur varies greatly 
(10,11) but the upper limit is similar to the tube diameter (10,12). 
Those random movements, often referred to as eddies (10,11,14), 
are superimposed on axial flow in the conduit. The turbulence in 
the fluid manifests itself in several ways. The fluid appears to be 
more viscous in that a smaller increase in the average linear flow 
velocity for a fixed increment in the pressure drop across the column 
is observed in the turbulent than in the laminar flow region. Fur- 
thermore, heat- and mass-transfer rates are much larger in the 
turbulent than in the laminar flow region. All these properties of 
turbulent flow can be satisfactorily predicted by a phenomeno- 
logical description. This would merely correlate the observed ex- 
perimental measurements, without necessarily further speculating 
about the origin of the observed phenomenon in terms of more 
fundamental concepts. 

For the purpose of quantitatively describing I,!J and C#I by means 
of phenomenological variables, it is necessary to consider the flow 
velocity at which turbulence sets in. This flow velocity cannot, in 
principle, be predicted by a consideration of the normal hydro- 
dynamic relations such as the Navier-Stokes equation (15). Al- 
though solutions of those equations are valid at all flow velocities, 
flows which are predicted are, however, not necessarily stable in 
real situations. It is found that for real flows above a critical flow 
velocity, small perturbations of the flow patterns are increased and 
turbulence sets in. It is more general to refer to this flow region as 
unstable since in the absence of perturbation the flow dynamics 
will remain laminar (14). Similarly perturbations in the flow system 
at flow velocities below the critical may cause deviations from 
streamline flow ( I ] ) ,  but there will be a tendency for these pertur- 
bations to be damped out. The fundamental cause of the observed 
instability has not been explained satisfactorily (11J5). It has, 
however, been demonstrated that this critical flow velocity can be 
correlated by the well-known dimensionless group, viz., the Rey- 
nolds number, Re = 2r&v (11  JSJ6). Experimental observation has 
indicated that this critical value of the Reynolds number is about 
2100 ( 1  1 ,15J 6). 

The random nature of turbulent flow necessitates statistical 
methods for its description (17J8). Consider therefore a macro- 
scopic fluid element, small enough to allow its constituent mole- 
cules to move coherently together. This element moves about 
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PLATE HEIGHT IN OPEN TUBULAR COLUMNS 47 

randomly and the following average quantities serve to describe 
its movement at any point in real space: 

u‘ = fj‘ + u” 
0’ = 8’ + 2)” 

w ‘  = a’ + W ’ ’  

where ii’ is the component of the average velocity in the axial 
direction and u” the component of the turbulent fluctuation ve- 
locity in the same direction. 6’, t ~ ’ ,  o f ’ ,  and W” are similar quan- 
tities for the y and z axes in a rectangular Cartesian representation. 
For an open tube 8’ = a‘ = 0, but the associated turbulent velocity 
fluctuations are, however, not zero. For the present study it is 
sufficient to consider the behavior of the representative fluid ele- 
ment only in the lateral direction. 

Prandtl (19) and others (20,21) have suggested that the move- 
ment of the macroscopic fluid elements can be considered to be 
very similar to that of gas molecules. This analogy has led to the 
introduction of a number of concepts for the description of tur- 
bulence which are similar to those employed in the theory of gas 
kinetics. A characteristic length, analogous to the mean free path 
length concept of gas kinetics, is one of these. This quantity is 
known as the mixing length and is defined as that distance which a 
fluid element must move with its initial mean velocity in the trans- 
verse direction until its flow velocity in the axial direction differs 
from that of the surrounding fluid elements by an amount equal to 
the mean transverse fluctuation in the turbulent velocity (13, 
19), i.e., 

where 1 is the mixing length. The present analogy can now be taken 
to its logical conclusion by the introduction of momentum and 
mass-transfer laws similar to those well known in gas kinetics. 
Thus, following arguments analogous to the derivation of an ex- 
pression for the shear stress present in gas flow, it is found that 
(10J 1,22) 

d i i (y)  d i i -  , dii 
7; = -p’(Z)2 I - dy l&-p‘z 

In analogy to the phenomenological relation between T’, dii/dy, 
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48 T. W. SMUTS, K. DE CLERK, AND V. PRETORIUS 

and the kinematic viscosity coefficient (10,22), viz., 

E‘ can therefore be regarded as a virtual kinematic viscosity coeffi- 
cient (10,11,13). By means of dimensional arguments, von Karman 
(23) has shown that for eddies at a distance from the wall 

where K is an empirical constant for all turbulent flows. From Eqs. 
(12-14) it thus follows that 

In the region very close to the wall, Eq. (15) is not valid. A number 
of expressions have been proposed (24-26) for E’ in this region- 
again from dimensional arguments. These expressions will not be 
given here, but they are shown in Table 1. 

In general the shear stress is comprised of both the molecular 
and turbulent contributions, i.e., from Eqs. (12) and (13) 

dii 
T ’ = - ( r ) + p ’ E ’ )  - 

dY 
The present simple model of the turbulent flow structure also 

takes into account the observed increase in mass transfer. The ap- 
propriate phenomenological equation for material flux is given by 

dc 
Y 

j = - ( D , +  El’)  d 

where E” is the turbulent diffusivity. The von Karman similarity 
hypothesis postulates (27) that E” = E ’ .  Although experimental 
justification for this equivalence is not entirely conclusive, it 
appears reasonable (2426)  to assume 

(18) E” = E’ = E 

for the present study. 
Equations (12-17) and suitable expressions for E in the region 

close to the wall serve now to relate the flow velocity and eddy 
viscosity. If empirical data on the dependence of either the ve- 
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PLATE HEIGHT IN OPEN TUBULAR COLUMNS 49 

locity or the eddy viscosity on the transverse coordinate are avail- 
able, the others’ dependence on this coordinate can be obtained 
via the above equations. Fortunately a wealth of experimental 
data has been gathered on velocity and eddy viscosity distributions 
(24-34) in the turbulent flow regions. It has become customary 
(10,11,24-29) to correlate all this data by the introduction of the 
dimensionless variables u+ and y+, defined by 

U 
U+ =- 

U# 

y -% + -  Y V 

- 
where 

and 
$-; = fP’C - 

2 
It has been argued (10,11,26) that u+ is a single-valued function of 
y+ in the turbulent flow region and there is overwhelming experi- 
mental support of this assumption for Re > 20,000 (10,11,26,34). 

A number of studies (10,11,24-26,28) have established semi- 
empirical correlations relating E/V and u+ to the dimensionless 
transverse coordinate y+. It  has also been shown (10,11) that the 
nature of these velocity profiles is determined mainly by the Rey- 
nolds number 2Crt/v and to a lesser extent by the Schmidt number, 
i.e., v/Dm. For this reason most of the subsequent results will be 
cast in a dimensionless form. The main results of some of these 
studies are summarized in Table 1. 

In the flow region 2000 < Re < 20,000 there appears to be some 
disagreement on the accuracy of the above-mentioned approach. 
Thus Sage et al. (24,30) have reported experimental evidence that 
u,. and y+ do not correlate the observed velocity distributions ac- 
curately enough in this region. Their observed velocity profiles 
are shown in Fig. 1. No attempt has been made to correlate this 
reported (24,30) deviation of u+(y+) from a single-valued function 
in the flow region 3000 < Re < 20,000. To take this into account 
in the expressions for u+(y+), an analytical expression was fitted 
very roughly to the few experimental results reported by Sage et  
al. For the region 0 6 y+ s 5 it has been assumed that Eq. 23a 
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PLATE HEIGHT IN OPEN TUBULAR COLUMNS 51 

(see 
yt- = 
data 

Table 1) still holds. In the region from y+ = 5 to roughly 
20, the following expression was found to fit the experimental 
suitably: 

[ 3.79 + 5.52‘1 + [3.79 + 5.52,’ 
In (6.6) In (6.6) u+ = 4.9 - 

z’ is now a function of the Reynolds number and of the form 

For the central core Eq. 24b (see Table 1) was modified to 
z’ = 1 + 86700/Re1.43 (26) 

u+ = 3.82’ + 2.8 In y+ (27) 
In any subsequent calculations with Eqs. (25) and (27), the value of 

3( 

2! 

2c 

u+ I: 

IC 

5 

- -_ -  EX PERIMENTAC OATA - HYPOTHETICAL VELOCITY PROFILES 

, Re = 20000 
R e = 2 0 0 0  

I I 
I00 lo1 102 103  

yt 
FIG. 1 .  Experimental evidence of the deviation of u+ from a single-valued 

function of y+ in the intermediate Reynolds number flow region. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



52 T. W. SMUTS, K. DE CLERK, A N D  V. PRETORIUS 

y+ at which both the equations yielded the same value of u+ was 
determined from 

u+ rEq. (2511 = U+ [Eq. (2711 
This value depended only slightly on the Reynolds number and 
was k21. 

The profiles calculated with the aid of Eqs. (25-27) are compared 
in Fig. 1 with the experimental data found by Sage et al. From this 
figure it is clear that the agreement between the experimental and 
the fitted curves is reasonable, and it would appear that the analyt- 
ical expressions account satisfactorily for the relevant physical 
phenomena. 

Finally I/J and cfI can now be obtained directly from the semi- 
empirical functions u+(y+) and ~ ( y + )  as follows. First, it follows from 
Eq. (17) that 

Clearly, from Eq. (4), if 

then 

Second, taking Eq. (19) into consideration, 

d Y + )  = u,u+ 

After substitution of the empirical relation (11) 

7; = 0.03325~' (a)  7/4~1/4rr1/4 
into Eq. (21), it follows, upon rearrangement, that 

a 
u, = 0.2 - 

Thus from Eqs. (S), (30), and (32) 
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PLATE HEIGHT IN OPEN TUBULAR COLUMNS 53 

EVALUATION OF THE PLATE HEIGHT FOR THE 
TURBULENT FLOW REGION 

4 and JI for the turbulent flow region are given by Eqs. (29) and 
(33) along with appropriate expressions for E + ;  and u+. Before under- 
taking the actual evaluation of the plate, it is instructive to consider 
the variation of these quantities with the actual radial coordinate. 
In Fig. 2 the function 4(rD)  is shown. From this representation it is 
evident that the velocity profile becomes flatter and the laminar 
buffer layer narrower with increasing Reynolds number. Figure 3 
depicts the dependence of ift on 1 - r/rt. It is clear from this informa- 
tion that convective mechanisms contribute overwhelmingly to 
the dispersion coefficient near the center of the conduit and that 
this effect is more pronounced for liquids than for gases. The magni- 
tude of this convective mechanism declines as the column wall is 

0 0.2 0.4 0.6 0.8 I 
rD 

FIG. 2. Velocity profiles in the turbulent flow region. 
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EXP Re : l0,OOO - THEORY SC 3 1,000 

I" 

10-2 10-1 too 

FIG. 3. Radial dependence of dispersion characteristics. 

approached. Furthermore, convective mass-transport mechanisms 
are more significant closer to the wall for liquids than for gases. 
The experimental results (29) compare reasonably with the theo- 
retical curves. 

The integrals Ill, Z12, and Z13 can now be rewritten in terms of 
the dimensionless quantities introduced above by employing the 
transformation 

where 

It is thus found that 

Y+ = g (1 - ;J (34) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



PLATE HEIGHT IN OPEN TUBULAR COLUMNS 55 

The complexity of the expressions for these integrals frustrates any 
attempt to evaluate them analytically. Recourse has therefore had 
to be made to numerical integration by Newton-Cotes methods 
(35), and a Fortran IV program was written for an IBM 1130 digital 
computer to facilitate all the calculations. 

Equations (36-38) were evaluated for the various proposed sets 
of phenomenological expressions summarized in Table 1. The 
agreement between the values of the integrals calculated for 
the various sets of expressions is reasonable. These values exhibit, 
furthermore, the same behavior in the range of Reynolds and 
Schmidt numbers considered. Only the integrals evaluated via the 
corrected velocity profiles, i.e., Eqs. (25-27) and Eqs. (23) and (24), 
are listed, together with &(x) for k = 0, in Table 2 for various values 
of the Schmidt and Reynolds numbers. hM(x) = HM(x) /r t ,  the reduced 
local plate height, is considered here and below to cover a wider 
range of parametric values. 

It is interesting to note in Table 2 that the numerical values of 
the integrals Z 1, Z12, and 113 are very nearly the same. Furthermore, 
for k = 0 the evaluation of the plate height with the aid of Eq. (1) 
and the data in Table 2 involves the difference of two very large 
quantities. This can best be illustrated by considering the case Sc = 
1000 and Re = 10,000, where (fll - 2ZI2 + I I 3 )  ScRe = 22459 
- 22452 = 7. Although reasonable care has been taken to obtain 
sufficient accuracy, discrepancies in these calculations can be 
expected and will have to be accepted as an inevitable conse- 
quence of plate-height expressions of this type. This numerical 
inaccuracy does not limit the present study seriously, since for 
values of k only slightly larger than zero (k 3 Zl1P becomes 
the dominant term in the plate-height expression. In this region the 
value of the plate height obtained from Eq. (1) and Table 2 depends 
almost solely on the value of Ill which is reliably known. This point 
is well demonstrated by considering Eq. (1) and Fig. 4. 
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LL 
0 * 10- 
0 
I- u z 
3 
LL 

10- 

10 

I 0' 

Re 2 l0,OOO 

Ill - 2 I l 2 +  Il3 al ,  a 2  

too I( 2 

k 
FIG. 4. Relative contributions of the respective terms to the value of (Ill - 

2 1 ~ ~  + + 2(z1 - lIZ)k + ~ k z .  

This numerical form of the plate-height expression is inconve- 
nient for subsequent use in calculations. The integrals in Table 2 
were therefore used to obtain an analytical expression for hM(x) by 
numerically fitting them to suitable functions. These equations 
have been fitted to the data in the region 2300 < Re < 100,000. 
Thus for Sc = 1 

h d x )  = [w + 1.4 x + (5 + 2.5910-5) k 

(39) +(++ 46 01 6.7 X lo-* ScRe 

and for Sc = 1000 
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PLATE HEIGHT IN OPEN TUBULAR COLUMNS 57 

3'70 1.6 x 10-6) k h~(x) = [m+ 3.2 x lo-* + (F- 36.01 

Equations (39) and (40) hold only for discrete Schmidt numbers. 
Although it should be possible to fit h,(x) numerically to two 
simultaneous variables, the resulting expressions are unwieldy. A 
simple expression that incorporates all the essential features of the 

TABLE 2 

Integrals I , , ,  I,,, and I,, Calculated with 
Modified Velocity Profiles [Eq. (25)]" 

Re  111 112 113 h M ( x )  

4,000 
8,000 

10,000 
20,000 
40,000 
80,000 

4,000 
8,000 

10,000 
20,000 
40,000 
80,000 

4,000 
8,000 

10,000 
20,000 
40,000 
80,000 

4,000 
8,000 

10,000 
20,000 
40,000 
80,000 

5.7643 x lo-' 
3.1759 x 
2.6680 x 
1.5796 x lo-* 
9.3527 x 
5.4674 x 

2.3874 x 
1.2295 x lo-* 
1.0118 x 
5.6374 x lo-, 
3.1557 x 
1.7512 x 

8.4755 x 
4.2865 X 
3.5079 X 10-3 
1.9215 x 
1.0581 X 

5.775 x 10-4 

2.7859 X lo-, 
1.4032 X 

1.1468 x 
6.2544 X 

3.4281 X 

1.8625 X 

s c =  1 
4.9839 x lo-' 
2.9438 x 
2.4978 x 
1.5013 x 
8.9529 x 
5.2772 x 

s c  = 10 
2.1347 x 10+ 
1.1683 x 
9.6925 x lo-, 
5.4566 x 
3.0662 x 
1.7115 x 

8.4755 x 
4.2865 x 
3.5079 x 
1.8779 x 
1.0353 x 
5.6771 x lo-* 
s c  = 1000 

2.5940 x 
1.3672 x 
1.1226 x 
6.1418 x 
3.3650 x 
1.8342 x 

s c  = 100 

4.3210 x l(r' 
2.7331 X l t z  
2.3420 x lo-* 
1.4285 x 
8.5779 X 
5.0973 X lC3 

1.9120 X l(r' 
1.1112 x 10-2 
9.2914 X l t 3  

2.9804 X lC3 
1.6733 X ICY3 

7.1350 X 

3.9986 x 
3.3115 x 
1.8355 X lC3 
1.0131 X 

5.5791 X lC4 

2.4163 X l t 3  
1.3224 x 

6.0316 X 

3.3032 x 
1.8065 X 

5 . 2 ~  x 1 ~ 3  

1.0991 x i t 3  

4.70 
1.72 
1.43 
1.10 
1.00 
0.83 

12.04 
3.21 
2.48 
1.68 
1.46 
1.12 

26.00 
5.37 
3.96 
2.70 
2.51 
1.87 

56.91 
9.19 
6.56 
4.93 
5.27 
3.94 

~ 

a h M ( x )  for the case k = 0. 
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58 T. W. SMUTS, K. DE CLERK, A N D  V. PRETORIUS 

- EOUATIONS 10. 39 AND 40  --- EOUATION 41 

k 
FIG. 5. Typical trends with k for both the laminar and turbulent flow regions. 

more exact equation to a logarithmic degree of accuracy is 

Equations (10) and (39-41) have been used to calculate the 
curves shown in Figs. 5 and 6. In the case of Eq. (lo), /aM(') was 
obtained for the laminar flow region after rearrangement and by 
taking C, = 0 and p = 1. The broken lines represent the approxi- 
mate expression, Eq. (41). 

DISCUSSION OF THE LOCAL PLATE HEIGHT FOR 
OPEN TUBULAR COLUMNS FOR C, = 0 

The well-known (36-41) behavior of hM(x) in the vicinity of its 
minimum (ReSc = 2/<) in the laminar flow region is not shown 
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PLATE HEIGHT IN OPEN TUBULAR COLUMNS 59 

in Fig. 6 since the characteristics of the local plate height in the 
laminar region have been studied in great detail both experi- 
mentally and theoretically (37-46). The minimum of the plate 
height results from the competition between two band-broadening 
effects. On the one hand, at flow velocities that are too low, the 
solute band moves slowly enough for molecular diffusion to broaden 
the band significantly per unit distance traveled along the column. 
On the other hand, with increasing flow velocity, resistance to 
lateral mass transfer in the mobile phase contributes increasingly 
to the local plate height. The resulting minimum of hM(x) [h,(x) = 
4 f l ]  depends on the mass distribution coefficient k. For k = 0, 
[h,(x)]min = I/*. This value increases with k Thus when k --* 03, 

[h ,+ , (~) ]min 1 m. This represents an increase of about a factor of 
3. In the higher Reynolds number region, shown in Fig. 6, h,(x) 

IC c/ //! Sc, k 

I 

Re 
I 02  lo3 lo4 

FIG. 6. Various significant trends in the reduced plate height in both the 
laminar and turbulent flow regions. 
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increases linearly with Re. In this region hM(x) changes by about a 
factor of 11 for a variation of k from 0 to large values (310). The 
variation of hM(x) with k is shown in Fig. 5. The linear increase can 
be expected to persist with increasing Reynolds number as long as 
the flow dynamics remain laminar. This Reynolds number range 
extends up to Re - 2000. 

As soon as turbulence sets in, the behavior of the local plate 
height with respect to changes in both Re and k becomes quite 
different from that in the laminar flow region. First, a pronounced 
decrease in hM(x) is observed as soon as the flow becomes turbulent. 
This decrease in hM(x) is much larger in the case of liquids (Sc = 
1000) than in the case of gases (Sc = 1). Thus for liquids the pre- 
dicted decrease in hM for k = 0, when going from Re = lo3 to 
Re = lo4, is approximately five orders of magnitude. Furthermore, 
h,(x) in the turbulent flow region for k = 0 is of the same order of 
magnitude as its value at the optimum Reynolds number in the 
laminar flow region. Second, the increase of hM(x) with a large in- 
crement of k from k = 0 is much greater than in the laminar flow 
region. Here again, this effect is more pronounced for liquids than 
for gases, as is clearly demonstrated in Fig. 5 by the curves for 
Re = 10,000. In advance it may be expected that this trend of h&) 
may seriously limit the application of turbulent flow chromatog- 
raphy. Although there is a significant decrease in the plate height 
when turbulent rather than laminar flow is employed, the resultant 
value of hM(x) is still very large. From the point of view of separation 
time, however, the gain may still be worth further consideration. 

The interpretation of the decrease of the local plate height in the 
turbulent flow region is, at this stage, obviously related to the en- 
hanced lateral mass-transfer rates and flatter velocity profiles typical 
of turbulent flow dynamics. The unexpected k dependence of hdx) 
in the turbulent flow region necessitates, however, more careful 
consideration. In this regard it should be pointed out that even for a 
flat velocity profile hM(x) > 0 when k > 0, as can easily be verified 
from Eqs. (2-5). Thus for a hypothetical flat profile and D,(T) = D,, 
it follows for k > 0 that 

k2 ReSc h M = E  (1 + k ) 2  
This band broadening results because solute molecules near the 
column wall have a greater chance of entering the stationary phase 
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than those further away and are thus transported at a rate slower 
than the average flow velocity (22). It has also been shown by de 
Clerk (7)  that this mechanism is formally equivalent to a “virtual” 
velocity profile. Although it is not possible to distinguish quanti- 
tatively in the expressions for the plate height between contribu- 
tions associated with “real” and those associated with “virtual” 
velocity profiles, consideration of Eq. (42) indicates that the effect 
of the virtual velocity profile manifests itself mainly in the coeffi- 
cient of k2 in the expression for h, i.e., with Zll. Furthermore, it is 
clear from Fig. 4 that it is mainly the Illk2 term that dominates the 
value of Zl, hence hM(x), at relatively large values of k It is thus not 
unreasonable to conclude that it is mainly the effect of the virtual 
velocity profile that causes the undue band spreading at large k 
values. The absence of eddies in the laminar layer adjacent to the 
column wall and the high linear velocity of the turbulent core are 
physically responsible for the magnitude of this effect. The impor- 
tance of the boundary layer properties is also accentuated by the 
difference in the values of hM(x) for gases and liquids when k > 1, 
as is evident from Fig. 5, if it is borne in mind that apart hom the 
boundary layer these fluids exhibit largely the same properties in 
the turbulent flow region. 

List of Symbols* 

c, 

C 

D 
Dm 

convenient parameter, related to the band- 
broadening mechanism residing in the stationary 
phase, defined by Eq. (1) (7’) 
concentration of solute in the mobile phase 
(ML-3)  
dispersion coefficient (L2T-' ) 
molecular diffusion coefficient in the mobile 
phase (L2T-’) 
value of D, measured at the column outlet (L2T1) 
longitudinal dispersion coefficient (L2T-’) 
radial dispersion coefficient ( L 2 T 1 )  
reference value of D,, defined by Eq. (4) (L2T1) 
value of D: measured at the column outlet ( L 2 T 1 )  
Fanning friction factor 

* Dimensions are given where applicable in terms of mass (M), length (L) ,  and 
time (T) .  
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f m  

k 

u+ = UIU, 

u, = (7”p’)”2 

correction for compressibility of the mobile 
phase, given by Eq. (6) 
correction for compressibility of the mobile 
phase, given by Eq. (7) 
convenient parameter, defined by Eq. (35) 
plate height measured at the column outlet (L)  
contribution to H of the band-broadening mech- 
anisms residing in the mobile phase (L) 
reduced plate height 
H M  measured in units of rt 
integral, defined by Eq. (2) 
integrals, defined by Eq. (2) 
material flux in the x direction, defined by Eq. 
(17) (2ML-T-I) 
mass distribution coefficient; ratio of the solute 
mass in the stationary phase to the solute mass 
in the mobile phase at equilibrium 
mixing length, defined by Eq. (14) (L)  
pressure (ML-IT2)  
ratio of the inlet to the outlet pressure 
Reynolds number; Re  = 2rta(x)/v(x) 
radial coordinate (L) 
dimensionless radial coordinate 
radius of open tubular column (L)  
Schmidt number 
linear flow velocity of the mobile phase in the 
axial direction (LT-’) 
radial average of u (LT’) 
value of ti measured at the column outlet (LT’) 
velocity component of a macroscopic fluid ele- 
ment in the x direction ( L F )  
component of turbulent fluctuation velocity of a 
macroscopic fluid element in the axial direction 
(LT1) 
temporal average of linear velocity of a macro- 
scopic fluid element in the x direction (LT’) 
dimensionless variable employed to correlate the 
velocity distribution u(y) as a single-valued func- 
tion in the turbulent flow region; see Eqs. (19- 
22) 
variable, defined by Eq. (21) (LT1) 
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W' 

W t 1  

€ 

velocity component of a macroscopic fluid ele- 
ment in the y direction (LT') 
temporal average of the linear velocity of a mac- 
roscopic fluid element in the y direction (LT-') 
component of turbulent fluctuation velocity of a 
macroscopic fluid element in the y direction 
(LT-I) 
velocity component of a macroscopic fluid ele- 
ment in the z direction (LT') 
temporal average of linear velocity of a macro- 
scopic fluid element in the z direction (LT-') 
component of turbulent fluctuation velocity of a 
macroscopic fluid element in the z direction 
(LT-l) 
lateral y coordinate (L) 
dimensionless variable employed to correlate 
the velocity distribution u(y) as a single-valued 
function in the turbulent flow region; see Eq. 

lateral z coordinate (L)  
correction to velocity distribution u+( y+), defined 

symbol for turbulent viscosity as well as for 
turbulent diffusivity when these quantities are 
numerically equal (L2T1) 
virtual kinematic viscosity for turbulent flow, 
defined by Eq. (12) (L2T-') 
virtual turbulent dihsivity, defined by Eq. (17) 
( L2T-l) 
viscosity in the mobile phase (ML-'T') 
empirical constant, defined by Eq. (14) 
kinematic viscosity coefficient of the mobile 
phase 
density of the mobile phase (ML-3) 
shear stress in the turbulent flow region, defined 
by E q  (12) (ML-'T-') 
shear stress in the absence of turbulence, de- 
fined by Eq. (13) (ML-'T-2) 
shear stress at the tube wall, given by Eq. (22) 
(ML-'T-2) 
integral, defined by Eq. (3) 

(19-22) 

by Eq. (26) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



64 T. W. SMUTS, K. DE CLERK, AND V. PRETORIUS 

4 

i,b 

function, indicative of the lateral variation in the 
Iinear velocity u, defined by Eq. (5 )  
function, indicative of the lateral variation in the 
radial dispersion coefficient, defined by Eq. (4) 
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